
Stephen Checkoway

Programming Abstractions
Week 1: Introduction

About the course

This is a course about Programming Languages

We will use the language Scheme to discuss, analyze and implement various

aspects of programming languages.

Course website: https://checkoway.net/teaching/cs275/2020-fall/

‣ Contains the syllabus, readings, homeworks, and slides

2

https://checkoway.net/teaching/cs275/2020-fall/
https://checkoway.net/teaching/cs275/2020-fall/

Parts of the course

Scheme and things you can do with it (5 weeks)

Implementing Scheme and other languages (4 weeks)

Advanced issues (delayed evaluation, continuations, etc.) (2 weeks)

Logic Programming, and Prolog (maybe) (2 weeks)

3

A quick history of Scheme

John McCarthy invented LISP at MIT around 1960 as a language for AI.

LISP grew quickly in both popularity and power. As the language grew more

powerful it required more and more of a system's resources. By 1980 5

simultaneous LISP users would bring a moderately powerful PDP-11 to its

knees.

Guy Steele developed Scheme at MIT 1975-1980 as a minimalist alternative to

LISP.

Scheme is an elegant, efficient subset of LISP. It has some nice properties that

we will look at that allow it to be implemented efficiently. For example, most

recursions in Scheme turn into loops.

4

Why Scheme for CS 275?

All LISP-type languages have lists as the main data structure

‣ Programs are lists

‣ Data are lists

‣ Scheme programs can reason about other programs. This makes Scheme

useful for thinking about programming languages in general.

Scheme is a different programming paradigm

‣ Python, Java, C and other languages are imperative languages. Programs in

these languages do their work by changing data stored in variables

‣ Scheme programs can be written as functional programs—they compute by

evaluating functions and avoid variable assignments.

5

Why Scheme for CS 275?

Scheme is very elegant. It is much less verbose than Java, which means it is

easier to see what is happening in a Scheme program.

It is fun!

6

Assessment

Eight or nine homeworks

‣ Between about 7 and 10 days per homework

‣ You can work by yourself or in groups of 2

‣ Each has lots of small, independent parts

‣ Three free late days to use throughout the semester

Two midterms exams

One final exam

Class participation

7

Clicker Zoom poll questions
Peer instruction

I'll read the question

Answer the poll

individually

Group discussion in a

breakout room, come

to consensus

Everybody in group

votes the consensus

Report your group's

vote/thinking
8

Can't see slides in breakout rooms !

Slides are posted before class (sometimes changes are made right before class)

https://checkoway.net/teaching/cs275/2020-fall/schedule.html

9

https://checkoway.net/teaching/cs275/2020-fall/schedule.html
https://checkoway.net/teaching/cs275/2020-fall/schedule.html

Scheme interpreter: DrRacket

Racket is Scheme plus extra nice stuff

‣ One consequence is Scheme has a bunch of traditional names for list

functions that are bad, Racket has better names! We'll learn and use both as

appropriate

We're actually going to be using Racket in this course

‣ I'm probably going to use Racket and Scheme interchangeably (sorry)

DrRacket is free https://www.racket-lang.org

10

https://www.racket-lang.org
https://www.racket-lang.org

Todo this week

Read chapters 1–3 of The Little Schemer

‣ This isn't a great book unfortunately

- It uses strange names for functions which we're not going to use

- It's also pretty old

Install DrRacket before next class

Do Homework 1

‣ Due next Tuesday, September 8 at 23:59

11

Introducing Scheme

Expression in Scheme (s-expression)
(Traditional)

A symbolic expression (s-expression) is one of the following

‣ An atom

- A number, e.g., 5, -10, 8.3

- Boolean values #t and #f

- A string, e.g., "foo"

- A symbol, e.g., 'foo, 'list-ref, 'pair?, 'set!

‣ Null

- Written null or '()

‣ A pair

- Written (x . y) where x and y are s-expressions

‣ A variable, e.g., foo, list-ref, pair?

13

Expressions in Racket
(Modern)

The concept of an atom isn't as meaningful now

Racket adds additional data types that aren't pairs, aren't null, and aren't really

atoms (like vectors)

For the most part, we're going to ignore these in this course

14

Lists

Lists are the most important data type in Scheme

A list is one of two things

‣ null, the empty list

‣ A pair (x . y) where x is an s-expression and y is a list

- x is called the head of the list and y is the tail

This is a recursive type definition: a type defined in terms of itself!

There's a special syntax for lists

‣ '(42 -8 #t + "foo") is a list of 5 atoms ('+ is a symbol); it's equivalent to 

'(42 . (-8 . (#t . (+ . ("foo" . ())))))

Lists are heterogeneous (they can contain elements of different types)
15

The empty list

There are three ways to write the empty list, they're equivalent

‣ null

‣ empty

‣ '() — We'll see shortly why this has a leading ' like a symbol does

All of these are simply a null pointer

We can use them mostly interchangeably, but when working with lists (as

opposed to some other data type we might build out of pairs), using empty or

'() can make it clear you mean the empty list specifically

16

Expression evaluation

Scheme evaluates s-expressions to produce values

‣ The value of '() is null

‣ The value of a variable is the value bound to it

- E.g., the variable null is bound to '()

‣ The value of an atom is the atom itself

‣ The value of a non-null list depends on the head of the list

- If the head is one of a specific set of symbols (e.g., define, lambda, λ, and

let), it's a special form. Each special form has its own way of being

evaluated

- Otherwise, it's procedure application

17

Procedure evaluation

(foo 1 2 #t) applies the procedure bound to the variable foo to the

arguments 1, 2, and #t

‣ (+ 1 2 3) — applies + to 1, 2, and 3, performing addition

‣ (* 5 (- x y) (/ z 8)) — computes 5(x - y)(z / 8)

‣ (list 32 5 8) — creates the list (32 5 8)

‣ (list-ref (list 32 5 8) 2) — returns the element of '(32 5 8) at

index 2 namely 8

Note that (1 2 3) is invalid because 1 isn't a special form nor is it a procedure

18

In C, Python, or Java, we would compute the arithmetic mean (average) of

two numbers (or variables holding numbers) as (x + y) / 2. How do we

do this in Scheme or Racket?

A. (x + y) / 2

B. ((x + y) / 2)

C. (+ x y / 2)

D. (+ (/ x y) 2)

E. (/ (+ x y) 2)

19

Procedure evaluation order
(s-exp0 s-exp2 ... s-expn)

Scheme evaluates each of the s-expressions in turn

‣ s-exp0 must evaluate to a procedure value (more about this shortly)

‣ s-exp1 through s-expn are evaluated to produce values

‣ Then, the procedure is applied to the n arguments

(+ (* 2 3) 8)

‣ + evaluates to the addition procedure

‣ (* 2 3) is evaluated

- * evaluates to the multiplication procedure

- 2 and 3 evaluate to themselves

- multiplication procedure is applied to 2 and 3, producing 6

‣ 8 evaluates to itself

‣ addition procedure is applied to 6 and 8, producing 14
20

Using quote ' to prevent evaluation

(quote (1 2 3)) evaluates to the list (1 2 3)

'(1 2 3) is shorthand for this and is how DrRacket will display lists

'() is null and how DrRacket displays the empty list

We can quote identifiers (e.g., variable names) and use them as symbols rather

than the value the identifier is bound to (if any)

‣ 'red, 'green, 'blue, '+, 'list, etc

E.g., (+ 1 2) evaluates to 3, '(+ 1 2) evaluates to the list '(+ 1 2)

21

Procedures for pairs and lists

Procedures for working with pairs
Construct a pair

Lists are pairs whose second element is a list so these procedures work with lists

cons — (Construct) Create a pair

‣ (cons x y) creates the pair (x . y)

‣ (cons 5 null) creates the list '(5)

‣ If lst is a list, then (cons x lst) returns a new list with head x and tail lst

‣ (cons 8 (list 1 2 3)) produces the list (8 1 2 3)

23

Cons cells
Construct a pair

(cons x y) creates a cons-cell

(cons 1 (cons 2 (cons 3 null))) produces

‣ You'll notice that this is a linked list!

24

x y

21 3 null

Aside: Trees from pairs

Nothing says our cons-cells need to be used for lists

(cons 'a 5)

(cons (cons 'a 'b) 'c)

(cons (cons 'a 'b)  
 (cons 'c 'd))

25

'a 5

'c

'a 'b

'a 'b 'a 'b

Procedures for working with pairs
Extract the first element of a pair

car — (Contents of the Address part of a Register*) Returns the first element of a

pair (or the head of a list)

‣ (car (cons 5 8)) (equivalently (car '(5 . 8))) returns 5

‣ (car '(1 2 3 4)) returns 1

‣ (car (1 2 3 4)) is an error because (1 2 3 4) is invalid

* This terminology comes from the IBM 704, an ancient computer

26

Procedures for working with pairs
Extract the second element of a pair

cdr — (Contents of the Decrement part of a Register*) Returns the second

element of a pair (or the tail of a list); pronounced "could-er"

‣ (cdr (cons 5 8)) (equivalently (cdr '(5 . 8))) returns 8

‣ (cdr '(1 2 3 4)) returns the list '(2 3 4)

‣ (cdr '(5)) returns the empty list, DrRacket will display '()

* This terminology comes from the IBM 704, an ancient computer

27

car returns the first element of a pair 

cdr returns the second element of a pair

If lst is a list how do we get the second element of lst? E.g., if lst is 

'(2 3 5 7), the code should return 3

A. (car lst)

B. (cdr lst)

C. (car (cdr lst))

D. (cdr (car lst))

E. (cdr (cdr lst))

28

Procedures for working with lists
(Traditional)

Scheme has a bunch of shorthands for combining car and cdr to extract

elements from lists (or any data structure built from cons-cells)

‣ (cadr lst) is (car (cdr lst))  

(cadr '(1 2 3 4)) => (car (cdr '(1 2 3 4)))  
 => (car '(2 3 4)) => 2  

I.e., it extracts the second element of a list

‣ (caddr lst) is (car (cdr (cdr lst)))

‣ (cdar lst) is (cdr (car lst))  
(cdar '((1 2 3) (4 5 6))) => (cdr '(1 2 3)) => '(2 3)

‣ Many others, e.g., caddr, cadddr, all with their own pronunciations

29

Procedures for working with lists
(Modern)

The traditional functions work on arbitrary data structures (like trees) built from

pairs

Unless we're working with pairs explicitly, we don't need to use car, cdr,

cadr, or any other the others as we have better named functions that only work

on lists

‣ (first '(1 2 3)) => 1

‣ (rest '(1 2 3)) => '(2 3)

‣ (second '(1 2 3)) => 2

‣ (third '(1 2 3)) => 3

‣ fourth, fifth, sixth, seventh, eighth, ninth, tenth

‣ (last '(1 2 3)) => 3

Recall, we can use empty for the empty list in place of null30

Defining data and procedures

Define a new variable
(define id s-exp)

The define special form binds an identifier (a variable) to a value

‣ This modifies the environment, the mapping of identifiers to values

‣ (define x 5)

‣ (define y (+ x x x))

‣ (define cs-professors '("Adam" "Bob" "Cynthia"))  

(third cs-professors) => "Cynthia"

The expression is evaluated so y will be bound to the value 15 rather than the

expression (+ x x x)

One of the most common things we'll want to do is bind a procedure to an

identifier

32

Creating procedures

Procedures are creating using the lambda (or λ) special form

‣ (lambda parameters body…)

- parameters is an unevaluated list of identifiers which will be bound to the

values of the procedure's arguments when procedure is called

- body is a sequence of s-expressions that form the body of the procedure,

they're evaluated in turn

Examples

‣ (lambda (x y)  
 (/ (+ x y) 2))

‣ (λ (name)  
 (display "Hello ")  
 (display name))

33

Binding identifiers to procedures

Unlike functions in C, procedures in Scheme are values, we can bind identifiers

to procedures 

(define mean  
 (λ (x y)  
 (/ (+ x y) 2)))  
(mean 37 42) => 39 1/2

34

Swapping the first two elements of a list

Let's define a procedure swap that takes a list as input and returns a new list

with the first two elements swapped so  

(swap '(a b c d))  

returns  

'(b a c d)

35

Binding identifiers to procedures

Binding identifiers to procedures is so common, there's a special syntax for it

‣ (define (name parameters) body…)

(define (mean x y)  
 (/ (+ x y) 2))

36

Multiple ways to define procedures

add1 takes a single integer argument and returns the result of adding 1 to it.

(define add1  
 (lambda (x)  
 (+ x 1)))

(define add1  
 (λ (x)  
 (+ x 1)))

(define (add1 x)  
 (+ x 1))

37

Closures: procedure values

The expression of (lambda parameters body…) evaluates to a closure

consisting of

‣ The parameter list (a list of identifiers)

‣ The body as un-evaluated expressions (often just one expression)

‣ The environment (the mapping of identifiers to values) at the time the

lambda expression is evaluated

38

Applying a closure to arguments

(define a 10)  
(define (foo x)  
 (+ x a))

Calling the closure extends the closure's

environment with its parameters bound

to the arguments

(foo 20)

39

a 10

Environment of the closure

a 10

x 20

Environment of the call

Closures are values: we can return them!

The result of (λ (x y z) …) is a closure and closures are values

‣ Hence (define fun (λ (x y z) …)) defines fun to be the closure and we can call

(fun 1 2 3)

But we can also return closures from procedures

(define f  
 (λ (x)  
 (λ (y)  
 (+ x y))))

(define (f x)  
 (λ (y)  
 (+ x y)))

40

(define g  
 (λ (x)  
 (λ (y)  
 (- x y))))

What is (g 3 4)?

A. 3

B. 4

C. -1

D. 1

E. An error

41

Conditionals

If expression
(if test-exp then-exp else-exp)

If test-exp evaluates to anything other than #f, then the whole expression

evaluates to the evaluation of then-exp

If test-exp evaluates to #f, then the whole if expression evaluates to the

evaluation of else-exp

Examples

‣ (if (= x y)  
 (+ x 2)  
 y)

‣ (if (empty? lst)  
 "The list is empty"  
 "The list is not empty")

43

Conditional expressions
(cond [test-exp1 exp1] … [test-expn expn])

Evaluates the test-exp expressions in turn

The first one that evaluates to something other than #f has its corresponding

exp evaluated which becomes the value of the whole expression

We can use else as the last test expression

(cond [(zero? x) 0]  
 [(> x 0) 1]  
 [else -1])  

44

Some examples

(define (signum x)

 (cond [(zero? x) 0]

 [(> x 0) 1]

 [else -1]))

(define (length lst)

 (cond [(empty? lst) 0]

 [else (+ 1 (length (rest lst)))]))

45

(define (fun lst1 lst2)  
 (cond [(empty? lst1) lst2]  
 [else (cons (first lst1)  
 (fun (rest lst1) lst2))]))

What is the result of (fun '(1 2 3 4) '(a b c))?

A. '(1 2 3 4 a b c)

B. '(4 3 2 1 a b c)

C. '(1 2 3 4 c b a)

D. '(4 3 2 1 c b a)

E. '(a b c)

46

Equality

Scheme's equality operators
=, eq?, eqv?, and equal?

(= a b) — compares only numbers, cannot be used for anything else

(equal? a b) — compares structures recursively

‣ you almost always want this one and not either of the two below

(eq? a b) — compares if a and b refers to the same object in memory

‣ This can be used on symbols (eq? 'foo 'foo) returns #t, but is otherwise

not good

‣ (eq? 2.0 (+ 1.0 1.0)) can (and in DrRacket does) return #f!

(eqv? a b) — like eq? but also works with characters and numbers

48

Testing for equality
Moral

Are you dealing with numbers? Use =

Are you dealing with anything else? Use equal?

(You can use eq? or eqv? with symbols like (eq? sym 'foo) to determine if

sym is the symbol 'foo)

49

Let's write some Racket!

(remove-numbers lst) — Remove all of the numbers from lst

‣ (remove-numbers '(foo 3 5 (6 8))) => '(foo (6 8))

‣ We can use (number? x) to test if x is a number

(filter pred lst) — Takes a predicate (i.e., (pred x) returns #t or #f)

and a list and returns a list consisting only of the elements satisfying the

predicate

‣ (filter (λ (x) (> x 0)) '(1 2 -8 3 0 -4)) => '(1 2 3)

‣ (filter number? '(a 1 b 2 c 3)) => '(1 2 3)

50

